CEWES MSRC/PET TR/ 98-08

Software Repository Interoperation
and Access Control

by

Shirley Browne
Jack Dongarra
Jeff Horner
Paul McMahan
Scott Wells

DoD HPC Modernization Program CEWES MSR G]

Programming Environment and Training

PASIRC lichols

03h00198

Work partially funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Funding also provided by thi¢ational Aeronautics and Space Adminis-
tration under Grant NAG 5-2736, the Defense Advanced Research
Agency under Grant DAAH04-95-1-0595 administered by the U.S. Army
Research Office, and ARL and ASC PET

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense or National Aeronautics and Space Administration
position, policy, or decision unless so designated by other official documentation.

Software Repository Interoperation
and Access Control

Shirley Browne, Jack Dongarra, Jeff Horner, Paul McMahan, and Scott Wells

Computer Science Department
University of Tennessee
Knoxville, TN 37996-1301

ABSTRACT

Over the past several years, network-accessible repositories have been developed by various
academic, government, and industrial organizations to provide access to software and related
resources. Allowing distributed maintenance of these repositories while enabling users to access
resources from multiple repositories via a single interface has brought about the need for
interoperation. Concerns about intellectual property rights and export regulations have brought
about the need for access control. This document describes technologies for interoperation and
access control as well as their deployment in the freely available repository maintainer's toolkit
called Repository in a Box. More importantly, the focus is on how these technologies were
investigated and are being applied toward the goal of promoting software sharing and reuse
among and between DoD Major Shared Resource Center (MSRC) Computational Technology
Areas (CTASs). The approach to interoperation has been to implement an IEEE standard data
model for software catalog records. The approach to access control has been to extend the data
model in the area of intellectual property rights and to implement access control mechanisms of
varying strengths, ranging from email address verification to X.509 certificates, which enforce
software distribution policies specified via the data model.

1. INTRODUCTION

The University of Tennessee's MSRC PET Team has conducted research on repository
interoperation and access control technologies for implementation in DoD's High Performance
Computer Modernization Program. Initial research of the following technologies was conducted
under funding from the National High-performance Software Exchange (NHSE). The NHSE
provides a uniform interface to a distributed set of discipline-oriented High Performance
Computing and Communications (HPCC) repositatigj. Development of the NHSE has been
funded by the federal HPCC agencies with the goal of sharing and distributing software and
related resources, developed by the HPCC program, among government and academic
researchers and industry. The NHSE is a virtual repository in that it catalogs and points to
software and related resources (e.g., documentation, test suites, technical reports) maintained
elsewhere, except for archive and mirror copies stored on NHSE machines. A virtual repository is
a type of interoperation that involves a hierarchical relationship. Interoperation also takes place
between distributed, discipline-oriented repositories, either within the same discipline or between
disciplines. Some repositories are organized along administrative boundaries, rather than

L http:/mvww.nhse.org/

disciplinary boundaries, and the user benefits from a virtual discipline-oriented view created on
top of the underlying organization repositories. In all of these cases, it is desirable that
repositories be able to interoperate easily.

Discipline-oriented repositories are under development by the Department of Defense High
Performance Computing Modernization Program, the NASA Earth and Space Sciences program,
and the NSF-sponsored metacomputing centers (NCSA and NPACI). In addition, three

disciplines the NHSE has targeted are parallel systems software and tools, high performance math
software, and computational chemistry. The parallel systems software and tools repository, called
PTLIB, provides comprehensive, up-to-date coverage on compilers, communication libraries,
debuggers, and performance analyzers for distributed and shared memory parallel computers.
HPC-Netlib provides access to high performance math software. A computational chemistry
repository has been developed as an example of a repository for an application area.

The advantages of interoperation are many. Interoperation permits distributed administration of
specialized repositories, while allowing users to access resources from multiple repositories via a
single interface. Repositories can reduce the burden of storing redundant contents by simply
pointing to resources stored in other repositories. Specialization means that resources are
maintained by discipline experts who are the best qualified to select, evaluate, catalog, and
provide access to resources in their disciplines.

The NHSE has the goal of distributing HPCC software to as broad a U.S. audience as possible, so
as to maximize the return on HPCC agency investment in development of this software by
promoting further research and technology transfer and increasing U.S. market competitiveness.
Where possible, HPCC software should also be made available to foreign researchers who are
collaborating with U.S. scientists. However, the distribution mechanisms must provide reasonable
assurances that intellectual property rights are protected and that export regulations are abided by.
The role of the NHSE has been to provide technological solutions that enable compliance with
U.S. laws, which satisfy the HPCC agencies' rights management and software distribution
policies, and that protect both owners and distributors of access controlled resources from liability
and prosecution. The following sections describe technologies developed by the MSRC PET
Team for interoperation and access control, as well as the implementation and deployment of
these technologies in the Repository in a Box toolkit.

2. APPROACH TO INTEROPERATION

Resources can be shared between interoperating repositories at two levels: 1) at the level of
catalog information that describes the resources, 2) at the level of the actual resources.
Advantages of the second level may be provision of faster and more reliable service to users, as
well as a single point of contact for administrative procedures such as license agreements.
Problems with the second level include liability for enforcing legal restrictions and proper
crediting of download and usage statistics to the originating site. The NHSE approach to sharing
catalog information has been to adopt the Basic Interoperability Data Model (BIDM) developed
by the Reuse Library Interoperability Group (RIG). The BIDM is an IEEE standard that specifies
a minimal set of catalog information that a software repository should provide about its software
resources in order to interoperate with other repositories [2]. The BIDM is expressed in terms of
an extended entity-relationship data model that defines classes for assets (the software entities),
the individual elements making up assets (i.e., files), reuse libraries (i.e., repositories) that provide
assets, and organizations that develop and manage libraries and assets. The model was derived
from careful study and negotiation of the commonalities between existing academic, government,

and commercial reuse libraries, by representatives from those libraries. Repositories need not
adopt the BIDM internally, although many have. They can continue to use internal search and
classification mechanisms appropriate to their uniqgue missions while using the BIDM as a
uniform external interface.

Relationship
Class Class

[Optional
Class Class Relationship]

Attribute
[Ontianal Attribute]

Cardinalities of Relationships

—— Class Exactly one

SuperClass { Many (zera ar mare)

‘ | —— Class Optional (zero ar one)

SubClass SubClass

1 Class One or mare

Figure 1: Legend for Data Model Notation

T nauphyect
Flams
A
J— 18 S D B0
Ebalrac] N B}
= wreat i
LDidaCHA=slzmalian
Al .
|. : |sLocatedin - 1 Fo” (o puit o el 1]
g L | a—
H 18T L - — .
L.u-u sClaasication |1+ |shiapele ! bl ¥ 1
uiq;fi:-r.-?m ran Ve | 3aT 1 O
G T
|-.--:--. -:--L.m ok
T s
Il |

Element

ElzraniTvpe
Hedia
Jniquall

Figure 2: Basic Interoperability Data Model

The BIDM may be visualized using the graphic notation of James Rumb@&lajbtt-Oriented

Modeling and Desigii7]. Figure 1 provides a legend for the graphic notation. A pictorial view of
the BIDM is shown in Figure 2. A subclass inherits all attributes and relationships of its parent
class. For example, the Asset, Element, Library, and Organization classes all inherit the Name

attribute from the RIGObject class. The basic model may be extended by defining additional
subclasses. Each of the classes, attributes, and relationships has a well-defined semantics that is
specified in the BIDM document. The datatype and allowed multiplicity for each attribute are

also specified.

Although the Basic Interoperability Data Model has greatly enhanced the ability of reuse libraries
to interoperate, it is desirable to be able to extend the basic model to cover specific areas more
thoroughly or to meet the needs of specialized libraries. One area for which an extension has
already been defined is that of asset evaluation and certification. The extension is the RIG Asset
Certification Framework, which defines a standard for the consistent structure, labeling, and
description of evaluation and certification policies and results. Most software reuse libraries
organize their evaluation and certification policies by levels. These levels provide a quick
reference for the user in determining what evaluation and certification criteria have been met by
particular assets. In general, increasing levels represent increasing confidence in the asset, as well
as increasing certification effort and cost. However, each library has defined its levels differently,
and the different levels and policies are confusing to users of multiple interoperating libraries.
Each reuse library needs to be able to define certification policies that are unique to its particular
mission and that are compliant with domain-specific standards. Rather than attempting to drive all
libraries to a standard set of levels, the Asset Certification Framework (ACF) prescribes a
standard for organizing and describing different policies. Thus, the ACF provides a common
basis for comparing different policies and for understanding different libraries' evaluation and
certification activities and results.

r [1sCcomposedor]
“ wasCreatedBy
Amset
IsLocatedin 1+ 2 [lsCompozedof
1+ IskdadeDf
—ontactls
Library HasDefault
[AewrardediWith] [References]
14
Element
CefinedBy
Cexrtificate 1+ 1+
- [CertifiedBy]
CertificateDate ~ ~
CertificateLavel [SuppunedEiy] Organization
[Cerificatestatus]
Certification
Artifact
Certificatiom
[IsProducedFrom Policy
Certifyin
PolicyEffectiveDate]
[Defines] FolicyRefarance]
Certification [Byassessing]
Lewvel
[Description]
Certifias Certification
Property
£ - PropettyDescription
Coxtification Canificatinhisthod
fualityFactor ElementType
[MToolapplied]

Figure 3: Asset Certification Framework

The ACF extends the BIDM by adding the AwardedWith relationship to the Asset class of the
BIDM and by defining additional classes of objects that are relevant to evaluation and
certification. A pictorial view of the ACF, with attributes of the original BIDM classes omitted, is

shown in Figure 3. Certification quality factors are high-level evaluation criteria, such as
completeness, correctness, and reliability. Certification properties define features or
characteristics of an asset that may be assessed as being true or false, or that may be measured.
Certification methods are documented evaluation techniques, which may include compilation,
static analysis, inspection, testing, formal verification, and benchmarking.

The NHSE has designed a software review policy that enables easy access by users to
information about software quality, but which is flexible enough to be used across and specialized
to different disciplines. The three review levels recognized by the NHSE are the following:
Unreviewed CheckedandReviewedTheUnrevieweddesignation means only that the software

has been accepted into the owning repository and is thus within the scope of HPCC and of the
discipline of that repository. THeheckedlesignation means that the software has been checked

by a librarian for conformance with the NHSE software guidelines REwewedlesignation

means that the software has been reviewed by an expert in the appropriate field. Domain-specific
repositories and expert reviewers are expected to refine the NHSE software review policy by
adding additional review criteria, evaluation properties, and evaluation methods and tools. The
NHSE also provides for soliciting and publishing author claims and user comments about
software quality. All software exported to the NHSE by its owning repository or by an individual
contributor is to be tagged with its current review level and with a pointer to a review abstract
which describes the software's current review status and includes pointers to supporting material.
The review information is encoded in terms of the RIG Asset Certification Framework for
exchange with other software repositories.

The RIG has defined another extension, called the Intellectual Property Rights Framework, which
provides a consistent framework for labeling and describing intellectual property rights and other
legal restrictions on software assets. Similar to the Asset Certification Framework, the IPRF
provides a common framework for interoperating libraries to describe and exchange their rights
management policies. Similar to how asset certificates are linked to the certification policy that
defined them and to the organization that did the certification in the ACF, rights assessments and
licensing terms are linked to their defining policies and responsible organizations in the IPRF.

The proposed RIG IPRF has been completed and is ready for submission to the IEEE balloting
process. One goal of this work is to enable pre-negotiation of agreements between reuse libraries
that facilitate large-scale sharing of restricted software -- i.e., so that a separate agreement for
each software asset and each pair of interoperating libraries does not need to be negotiated. The
RIG hopes that by providing the means to unambiguously describe export and other legal
restrictions on software, risks and fears of liability and litigation will be reduced and not unduly
impede the exchange of software between libraries. A pictorial view of the proposed IPRF data
model is shown in Figure 4.

In order for catalog information to be exchanged between software repositories, the abstract data
model described above is mapped to a concrete syntax that can be transferred using a file transfer
protocol such as FTP or HTTP. Thus far, the RIG has defined two such bindings, one that maps
the BIDM to an SGML Document Type Definition (DTD), and another that maps the BIDM to
META and LINK tags in the header of an HTML document.

2 [lsComposedOf]
i WasCreatedBy 14 R
AS SEt lsLacatedin 1+ L5 CmpoERd T OrgalltZﬂIIUﬂ
= GnacilE 1+
IsMasedr LI bra w [Has Default] 14 1&
[Restrictad By] References
PerformedBy
14
Element
Rights
Assessment ; ;
T pame | RightsPalicy
[Copyright] { } [PolicyEffectiveDate] WastreatedBy
[Trademark] Licensing [PalicyReferance]
[Patent] - .
[Disclaimer] L Terms,
[Assigns]
RightsCategoryy fLicensediyl
[Deserigtian] Defined By

Figure 4: Intellectual Property Rights Framework

In the SGML DTD for the RIG BIDM and the Asset Certification Framework, each class,

attribute, and relationship is defined as an SGML element. Subclasses are represented by nesting
the subclass element within the parent class element. For any of the relationships, the
implementor has the option of nesting the destination class SGML elements within the parent
class SGML element, or of specifying an identifier for a separate file that contains the metadata
for the destination class.

With the HTML binding, the attribute and relationship metadata for an object is placed in META
and LINK tags in the header of an HTML document that otherwise describes the object -- for
example an HTML page that describes a software asset or an organization. The value of a BIDM
attribute is placed in a META tag of the form

<META NAME="datamodel.class.attribute” CONTENT="value">

The metadata for an object that is the destination of a relationship is contained in another file,
which is specified using a LINK tag of the form

<LINK REL="BIDM.src-class.rel.dest-class" HREF="URL for destination">

3. REPOSITORY IN A BOX

The NHSE has developed the Repository in a Box (RIB) toolkit that enables repository
developers to create and maintain software catalog records using the BIDM, to exchange those
records as well as software resources themselves with other repositories, and to provide a user
interface for their software catalog. Multiple repositories may be maintained at the same site
using a single RIB installation. RIB provides a Web-based administrative interface for the
following tasks:

e creating and maintaining software catalog records

e exchanging catalog records with other repositories, including export to the NHSE virtual
repository
setting up browsing and searching interfaces to the repository

e discipline-oriented and site-specific customization
file uploading and mirroring

Although access control is not configurable from the Web interface, RIB also provides a
mechanism for configuring separate read and write access control on a per-repository basis. RIB
allows a repository maintainer to customize the BIDM by changing the RIB's BIDM

configuration file. Three example configuration files are included with RIB:

1. a simple version that contains only the Asset and Organization classes
2. the full BIDM version
3. the NHSE extension of the BIDM

By default, RIB uses the simplified version of the BIDM. The repository maintainer may
alternatively select one of the other examples, or may devise his or her own version of the BIDM.
Some restrictions are imposed on what modifications may be made to the BIDM configuration so
that all NHSE repositories can interoperate by exchanging BIDM catalog records. You may
change whether a field is required or optional. You may also change the allowed multiplicity of a
field from multiple to single. If you do not wish to use a BIDM field, it may be omitted. You may
also omit a BIDM or ACF class that you do not wish to use, although in that case you must be
careful never to specify any relationships to that class in a catalog record. You may also add
attributes and relationships to the existing BIDM classes, but you may not create new classes.
However, future versions of RIB will allow creation of new classes (in fact, all modifications will
be done by a subclassing mechanism). A repository should not use an existing BIDM field for a
different meaning than it is intended. Furthermore, if a field already exists for a given purpose,
then a repository should not create another field for that purpose with a different name. Also,
some BIDM fields, such as tlimmain field, are used specially by RIB and should not be

omitted. The configuration file also allows the maintainer to specify an alternative name for a
field that will be the name actually visible to the user, and to hide a field -- i.e., to have the values
for a field present in the repository database but not visible to users.

Thedomain field is another place where customization may be done. With RIB, the domain
hierarchy and the domain values in the software catalog records determine how the software
catalog table of contents is organized. Although a default domain hierarchy is included with RIB
for the general HPCC domain, RIB allows a repository creator to specify a discipline-specific
domain hierarchy that provides the controlled vocabulary to be used for the domain field. The
RIB interface provides easy-to-use forms for filling in catalog information for each of the BIDM
classes. Alternatively, the catalog information for an object (e.g., asset or other class) may be
imported from another repository by specifying the URL that contains the HTML binding of the
catalog information for the object. Once catalog information has been created and stored in the
database for a repository, a searchable, browsable HTML catalog may be created, using the
domain hierarchy described above to organize the table of contents. The table of contents
contains one-line descriptions of the assets and points to HTML versions of the catalog
information for the individual assets. A searchable index and a search form are also created
automatically.

The RIB Web interface allows the maintainer to enter a URL for a file to be uploaded to the
repository. The maintainer may optionally specify that a file be a mirror copy and may

periodically request that mirror copies be checked for updates. Because these operations can take
a long time, file uploading and checking of mirrored copies are done by a background process,
with email notification sent to the maintainer when the operation completes. After the maintainer
uploads a file, RIB provides the option of creating an Element object to catalog that file, with
pertinent portions of the Element form already filled in.

No access controls are enforced by a RIB installation by default. Instead, access control for RIB

is currently activated by enabling the access control mechanisms of the HTTP server. The actual
mechanisms for access control vary depending on what HTTP server is being used, but as long as
the HTTP server allows access control based on directory name it should be able to configure the
RIB installation to meet fairly rigid security requirements. If the HTTP server supports what is
called Basic HTTP Authentication, then a minimum level of security can be achieved. If the

HTTP server supports features such as SSL (secure sockets layer) or X.509 certificates, then
much higher levels of security can be achieved. More advanced access control and authentication
mechanisms that are currently under development for RIB are discussed in section 5.

4. ACCESS CONTROL TECHNOLOGIES

A rights assessment of an asset is carried out by the organization that owns the asset to determine
how the asset fits into its software distribution scheme. Rarely is the distribution scheme designed
specifically for each individual asset. A general scheme of how each category in a classification is
distributed simplifies the addition of new assets by stipulating for each class what security
measures should be taken and what terms should be included in the license. Software, to be
distributed from NHSE-affiliated repositories, generally falls into one of the following categories,
although variations exist according to the software distribution policies of individual agencies and
organizations:

e public domain software and documentation

o software requiring limited licensing restrictions, but still freely distributable within those
restrictions

e commercial software or other software requiring fees, royalties, or other types of payments
(This software typically requires licenses stipulating strong restrictions on copying, use, and
redistribution of the software).

e software technologies or documentation that fall under the control of Federal Export
Regulations

Once a classification scheme has been determined, distribution tools can manage categories
according to their authorization, authentication, and licensing requirements. Authorization means
making a judgment as to whether or not a user should be permitted access. Authentication means
verifying that the party attempting access is who he or she claims to be. The initial authorization
and authentication process may require manual intervention to check the user's credentials and
determine access privileges. Pre-authorization for one or more assets or entire classes of assets
may be carried out once and for all, with subsequent access requiring only authentication which
may be done automatically. Most electronic methods of authorization and authentication have not
been tested in court. However, new legislation recognizing encryption methods such as digital
signatures provides substantial legal backing.

Mass market software instigated the use of shrinkwrap to replace the necessity of having an end-
user sign a license. This practice has been challenged in several court cases. However, in the most
recent decision iRPro CD v. Zeidenberglune 1996, the Seventh Circuit Court ruled that

shrinkwraps are enforceable contracts, overturning a previous ruling. Barring a ruling from the
Supreme Court, the Seventh Circuit Court ruling validates the use of shrinkwrap and electronic
shrinkwrap. The validity of electronic shrinkwrap has not been explicitly questioned in court,
however, it is known by the new buzzword "clickwrap". Clickwrap provides extra comfort for

the courts by creating an interaction with the user. The action of the user accepting the terms of
the license by clicking a button along with the record of that action provide an indication of
commitment on the part of the user. A record of the transaction can be strong evidence against an
end user's misuse of downloaded software [5]. To further computerize contracts, thirty-nine states
have pending or passed legislation validating electronic or digital signatures. The language of
some legislation confuses electronic and digital signatures by not making the distinction that
electronic signatures are simply keystrokes with the intent to simulate a signature while digital
signatures use encryption keys. Nonetheless, this legislative activity increases the legal binding of
on-line contracts and helps support their use for software licenses.

A number of options are available for restricting access to software. A simple method would be to
test the hostname of the machine from which a request originates. The hostname could be used to
determine whether or not the request was made from a host within a certain domain,goxeh as

or .edu. Access to software could then be either allowed or denied based on the domain name.
This type of access control is simple to implement but presents some problems. One problem is
that the partitioning of hosts created by domain names would not necessarily match the restriction
criteria. For example, access permission to software is often based on the country from which the
request originates. However, some domain names, suoltgascom, and.net, do not indicate

where the host is geographically located. Even if one chose to err on the side of caution and allow
access only by those hosts that are partitioned correctly by domain names, the whereabouts of the
person who initiated the download would still be in question. A host with access privileges might
be used merely as a way station for software headed towards a host in another domain. There are
also many "hacker tools" that could be used to break into or impersonate hosts from trusted
domains. Another problem is that a browser can be set to use a proxy server to fetch documents,
and the server restricting access will only know about the domain name of the proxy, not the real
user. Despite its weaknesses, access control by domain name is currently in use at MIT for
distributing PGP, at Lucent Technologies for distributing Inferno, and at NCSA for distributing
cryptographically enhanced versions of NCSA httpd and Mosaic.

Username/password access restriction is another possible option for restricting access. With this
method, a user is asked to enter a correct username and password before being allowed to
download a file. In the case of an HTTP server, this type of access restriction is implemented by
means of a configuration file, which may be either global or directory specific. In the case of an
FTP server, accounts are set up for the allowed users on the file server machine, and access
permission bits and ownership of files are set appropriately. With both HTTP Basic
Authentication and commonly used FTP applications, passwords are sent over the network
unencrypted. In HTTP MD5 Message Digest Authentication, the password is not sent over the
network at all. Rather, a "digest” that is generated based on the password and other information
about the request is hashed using MD5 and sent over the network. Digest Authentication is more
secure over the network, but requires more rigorous security on the server machine, because the
stored information cannot be encrypted with a one-way function, whereas with Basic
Authentication the server stores the password using a one-way encryption function.

Public key cryptography provides the most secure form of access control. With this method, both
the request for the software and the software itself are encrypted so that they cannot be read by
anyone but the intended recipient. This method is intended to be combined with a public key
authentication mechanism such as PGP [4], X.509 [1], or SDSI[6]. The request would take the
form of a license agreement that the user signs using his or her public key to indicate agreement
to the terms and conditions for using the software. The user's public key also identifies him or her
so that the software server can check whether or not that user is authorized to obtain the software.
The software itself would be best encrypted using a symmetric session key that would be
generated for the purpose of this transmission only.

An X.509 certificate binds an identity to a pair of electronic keys that can be used for encrypting
and signing digital information. The pair consists of two related keys -- a public key and a private
key. The public key can be used by anyone to verify a message signed with the private key or to
encrypt a message that can only be decrypted using the private key. The private key must be kept
secure and protected against unauthorized use.

Certificates are issued by a Certification Authority (CA), which is a trusted party that vouches for
the identity of those to whom it issues certificates. In order to prevent forged certificates, the CA's
public key must be trustworthy. The CA can either widely publicize its public key or provide a
certificate from a higher level CA that attests to the validity of its public key. The latter leads to a
hierarchy of CAs. To obtain a certificate, an individual generates his own key pair and sends the
public key to the CA with proof of his identity. Different CAs may issue certificates with

different levels of identification requirements. For example, Verisign is a commercial CA that
offers four classes of certificates, with increasing levels of assurance (and cosipg the
requirements for the particular level applied for, the CA checks the identification and then sends
the requester a certificate attesting to the binding between the requester and his public key, along
with (possibly) a hierarchy of certificates verifying the CA's public key. An individual can use a
certificate to identify himself to secure servers such as membership-based or access-controlled
Web servers. Multiple certificates can be attached to a message or transaction, forming a
certificate chain in which each certificate attests to the authenticity of the previous certificate. The
top-level CA in the chain must be independently known and trusted by the recipient. When
installed in a Web browser, a certificate functions as electronic credentials, eliminating the need
for typing in a username and password. Similarly, a secure Web server uses its own certificate to
assure clients that the server is run by the organization claimed and to verify the integrity of the
provided documents. X.509 client certificates are currently supported by Netscape in its
Navigator 3.0 browser. Microsoft has also announced support for X.509 certificates in its client
applications. X.509 server certificates are currently used in server products from IBM, Microsoft,
Netscape, OpenMarket, and Oracle.

5. ACCESS CONTROL PROTOTYPE

As part of our research on access control, we have implemented a prototype of an access control
tool that demonstrates authentication of users, electronic licensing, and integrity checking of
downloaded files. The access control prototype has been implemented in collaboration with
colleagues at Rice University and at Vannevar Corporation in Houston, Texas. The prototype is
currently being demonstrated to government agencies to get their feedback. The prototype system
consists of the following components:

2 http://www.verisign.com/

10

e HTML GUI . The GUI consists of a collection of screens that guide the user though the
software selection and downloading process. The GUI is implemented in a template based
scripting system and contains "hooks" so that organizations can customize it for their own
use.

o Database interface The database interface software enables a repository's Web server to
communicate with an underlying database that stores data about software and users and
handles queries. The database collects and maintains information on users of the software and
provides an administrative interface to view this information. The database also stores MD5
checksums of the repository's files, and users may access this database of checksums to verify
the integrity of downloaded files.

Other components that are not part of the prototype but need to be interfaced with it are the
following:

e HTTP server. The system is designed to be compatible with any common HTTP server.

e DBMS. The system uses the ODBC open database standard, so that the Database Interface
can connect to most common DBMS's without modification.

e Certificate server. An X.509 certificate server such as the Netscape Certificate Server allows
organizations to issue, sign, and manage standard X.509v3 certificates for their public key
infrastructure. A certificate server could be run by a repository or by a third party that is
trusted by the repository.

The current prototype demonstrates different levels of access control and authentication required
for two classes of software -- 1) freeware that has a license but requires only a minimal level of
authentication, 2) export-restricted software that requires public-key authentication of the
recipient. In both cases, the user browses or searches the software catalog to select the desired
piece of software. In the first case, the user is asked to register his or her name and email address
and is then presented with a license agreement. As a result of registering, the user is sent a
username and password to his or her email address. After clicking a button to agree to the license
conditions, the user is allowed to enter the username and password, and he or she is then taken to
a download screen that allows downloading of the selected software. For this class of software,
the prototype only logs the transaction and verifies that the user has entered a valid email address.
For the second class of software, the prototype requires that the user has been issued an X.509
certificate, which verifies his or her identity before being allowed to download the software. A

form is provided that allows the user to apply for a certificate. The Netscape Navigator browser
supports an HTML tagsKEYGEN>, which is embedded in the HTML form. When submitting a

form using this browser, the browser generates an RSA key pair whose public key is digitally
signed and sent to a CGl script on the Certification Authority's machine. The CGI script, which
runs on the Certification Authority's machine, processes the input from the HTML form and

places the request for a certificate into a queue. The queue is routinely checked and each request
is then accepted or denied based on some set of policies set forth by the entity which controls the
release of the requested software. If the request was accepted, then the Certification Authority
creates and digitally signs a certificate that can be used to download the requested software. The
Certification Authority contacts the party who requested the software and points them to a URL

to retrieve the new certificate. The new certificate contains the public key that was generated by
the KEYGEN> tag. The party who requested the software points their browser at the URL that
was provided by the Certification Authority. The browser uses the public key encoded in the

11

certificate to associate the certificate with the appropriate private key in its local key database.
The certificate has now been installed in the browser. When an HTTP server wants to require
authentication based on client certificates, it uses the Secure Sockets Layer (SSL) protocol to
negotiate the transfer between the browser and the HTTP server. The HTTP server is set up so
that it will only accept requests that are signed by a certain Certification Authority. When the
server asks for a certificate, the browser user is prompted to choose which certificate that he or
she wants to send. Depending on whether or not that certificate has been signed by the proper
Certification Authority, access to the software is either accepted or denied. For purposes of the
prototype, Vannevar Corporation has been acting as the Certification Authority.

6. MSRC COMPUTATIONAL TECHNOLOGY AREA REPOSITORIES

The University of Tennessee PET Team is currently targeting three MSRCs of DoD's High
Performance Computing Modernization Program. The ARL (Army Research Laboratory), ASC
(Aeronautical Systems Center), and CEWES (Army Corp of Engineers Waterways Experiment
Station) MSRCs are currently participating in the software repository project. Initially, the PET
Team chose four CTAs to implement pilot software repositories using Repository in a Box (RIB)
toolkit. After repositories have been established at the following CTAs, others will follow.

ARL MSRC - CCM, SIP
ASC MSRC -- CCM, CEN
CEWES MSRC - CFD

Due to the interoperable function of repositories created by RIB, CTAs represented at multiple
MSRCs could benefit through the creation of a distributed repository. For example, if each CFD
CTA created a repository, all four repositories could interoperate, thus allowing for the creation
of a single virtual view of a distributed repository.

Requirements and Deliverables

Under the Statements of Work for the MSRCs, the PET team has been asked to carry out the
following tasks with respect to the RIB toolkit:

o Determine appropriate interoperation architecture and access control requirements
e Extend RIB functionality to include:

1. integration with an underlying Database Management System

2. stronger, more flexible security and access control

3. automatic file upload and mirroring

o Work with domain experts on customizing the data model, classification hierarchy, quality
control guidelines, and on identifying candidate software

e Implement pilot CTA repositories and discussion lists

e Recruit other CTAs

12

Accomplishments and Present Status

¢ RIB functionality has been augmented in version 1.2 to include automatic file uploading and
mirroring. An access control and "clickwrap" prototype front-end to RIB has been developed
and is being tested.

e The PET team has communicated with on-site leads/ domain experts for each CTA to identify
domain hierarchies and candidate software. The team is providing assistance with setting up
and populating these repositories.

e Two repositories have been set up, populated with software, and made available.
Computational Chemistry and Materials Science (CCM) repository at ASC MSRC
(http://www.asc.hpc.mil/rib/repositories/ccm-repository/catalog/index.html) and
Programming Systems and Tools repository also at ASC MSRC
(http://www.asc.hpc.mil/rib/repositories/ptes21/catalog/).

e The CFD CTA at CEWES MSRC has a domain hierarchy in place and is currently
identifying candidate software for their repository.

7. CONCLUSION AND FUTURE WORK

Through our research and development of interoperation and access control technologies, this
project has provided mechanisms for sharing software and related resources across organizational
and disciplinary boundaries, while ensuring that access restrictions dictated by organizational
software distribution policies and by government regulations are enforced. The interoperation
technologies we have developed have been successfully deployed in the RIB toolkit, which is
currently in use or is being deployed for several CTAs as outlined above. The access control
technologies have been implemented and tested in a prototype. Our next step will be to integrate
the access control technologies into RIB and field-test the combined system. The integration will
involve the following:

1. developing encodings of software distribution policies, distribution categories, and electronic
licenses in terms of the IPRF extension to the BIDM,

2. developing forms for inputting IPRF catalog information into the RIB database, and

3. automatically generating the necessary on-line software accessing and licensing forms from the
IPRF catalog information.

Additional discussion regarding increased RIB functionality has recently surfaced which focuses
on the following areas:

¢ Distinguish between staging and publishing a catalog, facilitating public affairs review, and
editing a published repaository; versioning might be useful too.

o A method to designate sensitive assets, selectively displaying sensitive and public versions of
the same repository.

13

o Ability to make global changes to assets. Currently, editing assets that have fields with
identical contents requires that each asset be edited. For example, many assets may have
relationships with one organization. If that organization changes, the organization field for
each individual asset must be edited.

o Ability to manipulate entire repositories. For example, RIB currently has no mechanism for
moving an entire repository i.e., making a back-up copy on another machine.

Currently, RIB is a file-based system. Implementing RIB with an underlying database is a
possible solution to facilitating the above functions. The PET team is planning a database version
of RIB for the future and is currently working towards securing a user-license for a commercial
database.

Furthermore, decisions will need to be made by the MSRCs that use RIB about the level of access
control required. If the X.509 certificate approach is chosen, then either that MSRC or a trusted
third party will need to serve as a Certification Authority.

Training materials represent additional potential for cataloging and interoperation via

interoperable repositories for sharing such material among MSRCs. The BIDM is easily
extendable such that both it and RIB could be used to provide access to training materials in
addition to software.

ACKNOWLEDGEMENT

This work was supported by a grant of HPC time from the DoD HPC Modernization Program.

REFERENCES
[1] CCITT. Recommendation X.509: The Directory - Authentication Framed/8&8.

[2] IEEE Standard for Information Technology - Software Reuse - Data Model for Reuse
Library Interoperability: Basic Interoperability Data Model (BIDMEEE Std 1420.1, 1995.

[3] S. Browne, J. Dongarra, S. Green, K. Moore, T. Rowan, R. Wade, G. Fox, K. Hawick, K.
Kennedy, J. Pool, R. Stevens, R. Olsen, and T. Disz. The National HPCC Software
Exchangd EEE Computational Science and Enginegri(2):62--69, 1995.

[4] S. Garfinkel PGP -- Pretty Good PrivacyD'Reilly and Associates, Inc.: Sebastopol,
California, 1995.

[5] J. C. Reinbolt. License agreements on the Intern€laliiornia Computer Expo '96an
Diego, Aug. 1996.

[6] R. Rivest and B. Lampson. SDSI - A Simple Distributed Security Infrastructure.
http://theory.lcs.mit.edu/ ~rivest/publications.html, Sept. 1996.

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorefidgect-Oriented
Modeling and DesigriPrentice-Hall: Englewood Cliffs, New Jersey, 1991.

14

